
www.manaraa.com

remote sensing  

Communication

Changes in Meadow Phenology in Response to Grazing
Management at Multiple Scales of Measurement

William Richardson 1,*, Tamzen K. Stringham 1, Wade Lieurance 1 and Keirith A. Snyder 2

����������
�������

Citation: Richardson, W.; Stringham,

T.K.; Lieurance, W.; Snyder, K.A.

Changes in Meadow Phenology in

Response to Grazing Management at

Multiple Scales of Measurement.

Remote Sens. 2021, 13, 4028. https://

doi.org/10.3390/rs13204028

Academic Editor: Humberto

L. Perotto-Baldivieso

Received: 30 June 2021

Accepted: 3 October 2021

Published: 9 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Agriculture, Veterinary and Rangeland Science, University Nevada Reno, Reno,
NV 89557, USA; tstringham@unr.edu (T.K.S.); wlieurance@unr.edu (W.L.)

2 Great Basin Rangelands Research Unit, USDA Agricultural Research Service, Reno, NV 89557, USA;
keirith.snyder@usda.gov

* Correspondence: wcrichardson@nevada.unr.edu

Abstract: Riparian and ground-water dependent ecosystems found in the Great Basin of North
America are heavily utilized by livestock and wildlife throughout the year. Due to this constant
pressure, grazing can be a major influence on many groundwater dependent resources. It is important
for land managers to understand how intensity and timing of grazing affect the temporal availability
of these commodities (i.e., biodiversity, water filtration, forage, habitat). Shifts in forage or water
availability could potentially be harmful for fauna that rely on them at specific times of the year.
Seven meadow communities, each consisting of three distinct vegetative communities, were grazed
at three intensities to determine the relationship between grazing management and phenological
timing of vegetation. The agreement of on-the-ground measurements, near-surface digital cameras
(phenocams), and satellite-based indices of greenness was examined for a two-year period (2019–2020)
over these grazing and vegetative community gradients. Field determined phenology, phenocam
Green Chromatic Coordinate (GCC), and Landsat Normalized Difference Vegetation Index (NDVI)
were all highly correlated and the relationship did not change across the treatments. Timing of growth
varied in these ecosystems depending on yearly precipitation and vegetative type. Communities
dominated by mesic sedges had growing seasons which stopped earlier in the year. Heavier grazing
regimes, however, did not equate to significant changes in growing season. Ultimately, shifts in
phenology occurred and were successfully monitored at various spatial and temporal scales.

Keywords: GCC; grazing management; groundwater dependent ecosystems; Landsat; NDVI; pheno-
cam; phenology

1. Introduction

Understanding how groundwater dependent areas located within rangelands are
affected by various management techniques is crucial to conservation. Their importance
in arid and semi-arid ecosystems is generally disproportionate to their overall size [1,2].
Riparian areas boost landscape biodiversity [3], filter water [4], provide forage and water
for livestock [5], and serve as suitable seasonal and year-round habitat for a wide variety
of key taxa [6,7].

Livestock tend to congregate in these systems, due to increased water and forage
availability [8]. Improper grazing management has been shown to reduce vegetation,
leading to destabilized streambanks and erosion [9,10]. Over-grazing can also decrease
leaf area, nutrient stocks, photosynthetic capability, reproductive success, and vegetative
growth [11–13]. It should be noted that varying plant communities can lead to different
responses in grazing. Skaer et al. [14] found that grazing at Palo Corona Regional Park
(Monterey County, California) led to a 15% increase in cover of exotic annual forbs but had
little to no effect on the cover of native perennial forbs and grasses.

One of the main obstacles that land managers face is understanding how disturbance
affects the high temporal variability that accompanies plant establishment and growth [15].
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Phenology, or the seasonal recurrent activity of plants and animals, is the term used to
describe this trait [16]. In future years, climate change may result in widespread shifts
in phenology across a large range of taxa [17–19]. Managers may have to alter land use
practices to compensate for these shifts. Assessing how phenology changes over gradients
of temperature, moisture availability, and land use will help to clarify how lifecycle timing
may be altered in the coming years.

Grazing can affect phenology in a number of ways. Both grazing and grazing exclusion
can indirectly modify phenology by influencing environmental factors like soil nutrients,
soil moisture and temperature, and photoperiod [20–23]. Li et al. [24] showed that grazing
exclusion led to a thicker litter layer, which suppressed water loss by soil evaporation,
and resulted in a later vegetation green-up period. Zhu et al. [25] tested this hypothesis
in alpine meadow grasslands in northern Tibet. They found that after 2-4 years, grazing
exclusion significantly advanced the green-up and flowering dates of several low-growing,
shallow rooted species.

Groups of researchers, such as the USA National Phenology Network, have developed
general phenological monitoring techniques that allow for a greater consistency between
studies [26]. Within the Great Basin, several unique challenges hinder the monitoring of
plant phenology. Given the vast and rugged landscapes, many areas are difficult to access
and sample. Additionally, many of these ecosystems consist of a wide variety of herbaceous
and woody vegetation, each plant type having different phenological patterns. This
spectrum obstructs the application of a singular comprehensive monitoring technique [27].

Understanding the relationships between various spatial and temporal resolutions
of phenology, could potentially allow for extrapolation of patterns seen from in situ field
observations to larger landscapes seen from satellite imagery [28–30]. One way in which
the gap can be bridged between field observations and satellite imagery is through the use
of repeat photography from ground- or tower based digital cameras (hereafter referred to
as phenocams) [31,32]. Average daily greenness index values, such as the Green Chromatic
Coordinate (GCC), calculated from phenocams can be used to fit curves which estimate
growing season metrics [32,33]. GCC has been shown to be highly sensitive to slight
changes in leaf colors in summer and more pronounced color changes in the autumn [34].
This may prove to be useful in arid environments where green-up and plant growth occurs
fairly quickly following rainfall pulse events in late spring and early summer [35–37]. Using
phenocams aids in increasing temporal resolution, broadening the spatial footprint of field
observations, and reducing the costs of field-based observations [38]. Browning et al. [27]
showed the utility of phenocams in arid environments by comparing phenological metrics
of black gramma (Boutella eriopoda) and mesquite shrub (Prosopis glandulosa) across field
observations, phenocams, and satellite time series in a Chihuahuan desert grassland. They
found that field observations of canopy greenness and start-of-season date were highly
correlated with both satellite and phenocams imagery. Systems with more heterogeneous
vegetation would require satellite-derived indices with finer spatial resolution. Two of
the most common satellite tools used for calculating broadscale phenology indices are
Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared (NIR) and red
reflectance data, and Landsat Normalized Difference Vegetation Index (NDVI) derived
data [31,39–41]. In regard to groundwater dependent riparian meadows, the spatial res-
olution of MODIS NIR data (250 × 250 m) is too coarse to accurately monitor the area
without including neighboring communities [42,43]. Landsat NDVI derived data has been
shown to have high enough spatial resolution (30 × 30 m) to track the phenology of many
groundwater dependent meadows [34,44].

This study aims to (1) establish baseline phenological metrics, and therefore better
understand seasonal productivity and forage availability, in several heavily grazed upland
meadows within the Great Basin, (2) quantify the effects of differing grazing management
strategies on phenological metrics in the context of year-to-year climate variability, and (3)
determine the relationship between on-the-ground phenology measurements, phenocam
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GCC, and Landsat NDVI data within these heterogeneous systems and across a spectrum
of different grazing regimes.

2. Methods and Materials
2.1. Site Description and Treatments

Several high elevation meadows, referred to as the Haypress meadow complex, are
located in the Desatoya Mountains of the Central Great Basin (39◦27′ N, 117◦36′W; 39◦19′ N,
117◦42′ W). Over the past 10 years (2010–2020), annual precipitation in this complex ranged
between 175 and 419 mm, with an average value of 315 mm. Annual mean temperature
ranged from 4.6 to 7.6 ◦C, with an average of 5.8 ◦C. These values were obtained via the
Google Earth Climate Engine (http://climateengine.org (accessed on 1 October 2021), [44]).
Four meadows were selected for this study; they were given names based on their relative
locations or the grazing intensity associated with them: (1) Lower at 2322 m, (2) Middle
at 2365 m, (3) Upper at 2438 m, and (4) Uncontrolled at 2320 m. For the Lower, Middle,
and Uncontrolled meadows the soil type for the first 14 inches of soil was a gravelly loam;
lower than 14 inches the soil type was a gravelly clay loam. In the Upper meadow, the soil
type for the first 12 inches was a gravelly clay loam; beneath that it became an extremely
cobbly loam [45].

The vegetation of the meadows, while diverse, was delineated into three distinct
classes. These classes were (1) the dry meadow community, which consisted of an over-
story of mountain big sagebrush (Artemisia tridentata ssp. vaseyana) and an understory
of primarily Douglas’ sedge (Carex douglasii), (2) the mesic meadow community, which
consisted of Douglas’ sedge, arctic rush (Juncus arcticus), and a mixture of meadow forbs (ex.
Chorispora tenella, Symphyotrichum ascendens), and (3) the wet meadow community, which
consisted of Nebraska sedge (Carex nebrascensis), arctic rush, and a mixture of facultative
wet forbs (ex. Montia chamissoi, Veronica americana). Vegetation surveys were conducted
in 2020, using standard line-point intercept methods [46], to verify the differentiation of
these groups (Figure 1). On average, forbs had the highest amount of cover in the wet
communities (29%), graminoids in the mesic communities (71%), and shrubs in the dry
communities (56%).

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 21 
 

 

upland meadows within the Great Basin, (2) quantify the effects of differing grazing 

management strategies on phenological metrics in the context of year-to-year climate 

variability, and (3) determine the relationship between on-the-ground phenology 

measurements, phenocam GCC, and Landsat NDVI data within these heterogeneous 

systems and across a spectrum of different grazing regimes. 

1. Methods and Materials 

2.1. Site Description and Treatments 

Several high elevation meadows, referred to as the Haypress meadow complex, are 

located in the Desatoya Mountains of the Central Great Basin (39°27’ N, 117°36’ W; 39°19’ 

N, 117°42’ W). Over the past 10 years (2010–2020), annual precipitation in this complex 

ranged between 175 and 419 mm, with an average value of 315 mm. Annual mean 

temperature ranged from 4.6 to 7.6°C, with an average of 5.8°C. These values were 

obtained via the Google Earth Climate Engine (http://climateengine.org, [44]). Four 

meadows were selected for this study; they were given names based on their relative 

locations or the grazing intensity associated with them: (1) Lower at 2322 m, (2) Middle at 

2365 m, (3) Upper at 2438 m, and (4) Uncontrolled at 2320 m. For the Lower, Middle, and 

Uncontrolled meadows the soil type for the first 14 inches of soil was a gravelly loam; 

lower than 14 inches the soil type was a gravelly clay loam. In the Upper meadow, the soil 

type for the first 12 inches was a gravelly clay loam; beneath that it became an extremely 

cobbly loam [45]. 

The vegetation of the meadows, while diverse, was delineated into three distinct 

classes. These classes were 1) the dry meadow community, which consisted of an 

overstory of mountain big sagebrush (Artemisia tridentata ssp. vaseyana) and an understory 

of primarily Douglas’ sedge (Carex douglasii), 2) the mesic meadow community, which 

consisted of Douglas’ sedge, arctic rush (Juncus arcticus), and a mixture of meadow forbs 

(ex. Chorispora tenella, Symphyotrichum ascendens), and 3) the wet meadow community, 

which consisted of Nebraska sedge (Carex nebrascensis), arctic rush, and a mixture of 

facultative wet forbs (ex. Montia chamissoi, Veronica americana). Vegetation surveys were 

conducted in 2020, using standard line-point intercept methods [46], to verify the 

differentiation of these groups (Figure 1). On average, forbs had the highest amount of 

cover in the wet communities (29%), graminoids in the mesic communities (71%), and 

shrubs in the dry communities (56%). 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Forb Grass Sedge Shrub Total Foliage

%
 C

o
ve

r

Dry

Mesic

Wet

Figure 1. Line point intercept data grouped by percent foliar cover of functional type at four meadows in the Haypress
Meadow complex in the Desatoya Mountains, Nevada, U.S.A.

Historically, grazing in these meadows consisted of yearlong grazing by feral horses
and managed cattle grazing. Haypress livestock grazing occurred in the following manner:

http://climateengine.org
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for two consecutive years, grazing occurred in May and continued through mid-June;
the following two years, use occurred mid-August through September. Livestock use
was generally limited to one month, with around 700 cow–calf pairs having access to the
meadows but could last up to six weeks depending on the year. In 2019, cattle were brought
in on the first half of the grazing rotation (mid-June).

In the winter of 2019, pipe-rail fencing was installed in the complex. The perimeters of
the Lower, Middle, and Upper meadows were fenced completely, while the Uncontrolled
meadow was not fenced. For the three fenced meadows, cross fencing was constructed
which cut each meadow in half. The higher elevation portion of each meadow was
designated as part A, and the lower part B. This allowed for a total of seven separate units
to be treated and measured (Table 1). In the summer of 2020, cattle were brought into the
complex in mid-June. Section A of each meadow was grazed such that the major forage
species of the riparian areas had a mean stubble height of roughly 10 cm [47] (approximately
3 days of grazing). Section B of each meadow was left ungrazed, and the Uncontrolled
meadow was left unmanaged (allowed for constant grazing by both cattle and horses to
occur in the meadow throughout the summer).

Table 1. Meadow and phenocam information, including the area of the phenocam field of view (i.e.,
camera viewshed), the areal extent of the meadows, latitude and longitude of the meadows, and the
orientation of each phenocam.

Site Camera
Viewshed (ha)

Meadow
Area (ha)

Lat/Long
(Decimal Degrees)

Camera Orientation
(Cardinal Direction)

Upper A 0.09 0.64 39.317479/−117.697128 NE
Upper B 0.11 0.29 39.315936/−117.698013 NNW

Middle A 0.10 0.73 39.322538/−117.703238 NE
Middle B 0.04 0.11 39.320682/−117.703979 NNE
Lower A 0.18 0.56 39.331126/−117.701456 NNE
Lower B 0.15 0.66 39.330403/−117.701739 NNW

Uncontrolled 0.12 0.33 39.325874/−117.688641 E

2.2. Field Methodology

The Line-Point Intercept (LPI) method [46] was used to calculate the percent cover of
the wet, mesic, and dry subregions of each of the seven meadow sections in June of 2018.
The number of transects, length of transects, and number of points along transects was
tailored to each area of vegetation (Figure 2, lengths of transects ranged from 3 to 20 m,
number of transects per community ranged from 3 to 9). Monitoring was set up in such a
way that at least 100 data points could be generated from each LPI measurement (points
ranged from 100 to 120).

In 2019 and 2020, these same transects were used to monitor the phenology and height
of the meadows bimonthly, throughout the growing season (May to October). At 25%, 50%,
and 75% of the total length of each transect, a 1 m hoop was placed and average height
(collected using a fiberglass folding ruler) and phenology of each species in the hoop was
recorded (Figure 2). Average phenology was determined using simplified methods outlined
in Moore et al. [48], where each species was assigned one of 8 different phenological stages:
Leaf development (L), Initial inflorescence (I), Mature inflorescence (Im), Inflorescence–
pollen released (Ip), Initial seed development (S), Mature seed development (Sm), Dropped
seed (Sd), and Desiccated (D). If a species was grazed to the point where phenology could
not be ascertained, a rating of G (Grazed) was given. A total of roughly 9–15 hoops were
placed per community type for each of the meadow regions.
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2.3. Phenocam and Landsat Methodology

In fall of 2017, four phenocams (StarDot NetCam SC 5MP IR-enabled cameras us-
ing complementary metal oxide semiconductor (CMOS) image sensors, StarDot Tech-
nologies, Buena Park, CA, USA) were installed in four of the meadow sections pre-
viously discussed, in fall of 2018 the other three were installed. Methods of instal-
lation and use for the phenocams were sourced from the PhenoCam Network (https:
//phenocam.sr.unh.edu/webcam/tools/ (accessed on 1 October 2021)) (Table 1). Addition-
ally, time-domain reflectometry soil moisture sensors (CS-616, Campbell Scientific, Logan,
UT, USA) were installed at depths of 10, 20, 35, and 50 cm at each of the phenocam sites.
Eight RGB images at a resolution of 1296 × 960 pixels were taken daily between 12:00 pm
and 3:30 pm. All data and images were downloaded monthly during the growing season,
and once every three months during the winter.

Phenopix, the R statistical program package [49], was used for the calculation of all
phenological metrics derived from the phenocam images. The package allowed Regions of
Interest (ROIs) to be manually defined that were representative of the wet, mesic, and dry
communities within each meadow section. The average digital numbers, which ranged
from 0 to 255 and were extracted for red (RDN), green (GDN), and blue (BDN), of the pixels

https://phenocam.sr.unh.edu/webcam/tools/
https://phenocam.sr.unh.edu/webcam/tools/
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within each ROI were used for the analysis. These numbers were converted into green
chromatic coordinate (GCC) values, a relative percent index, using the following equation:

GCC =
GDN

(RDN + GDN + BDN)
(1)

GCC values were filtered using the night, spline, and max filter options in the phenopix
package. An additional novel filter using the blue chromatic coordinate, was added to
remove values influenced by snow (see Snyder et al. [43] for more details). A method
proposed by Gu et al. [50] was used to apply a double logistic fit to the filtered sub daily
GCC values. One thousand replications were used for an uncertainty analysis to determine
how well predicted values fit observed. The Gu et al. [50] threshold method calculates four
phenophase dates for each fitted set of data: an upturn date (UD) when GCC of vegetation
begins to increase consistently, a stabilization date (SD) when vegetation approaches
maximum GCC, a downturn date (DD) when GCC starts to consistently diminish, and
a recession date (RD) when vegetation reaches a seasonal low. The double logistic fit
determined by Gu et al. [46] was also applied to the collected soil moisture data and the
RD phenophase DOY was determined for each individual meadow across the two years.

Landsat NDVI data were extracted from Landsat 8 Optical Imager (OLI) satellite im-
ages using the Climate Engine (http://climateengine.org (accessed on 1 October 2021)) [44].
Polygons were created for each meadow section and NDVI was determined for 2019 and
2020. NDVI values were calculated as Equation (2):

NDVI =
(NIR− Red)
(NIR + Red)

(2)

where NIR is the near infrared at-surface reflectance and Red is the red at-surface reflectance.
The polygons created were large enough to encompass dry, mesic, and wet vegetation
communities, and were at least one pixel in size (30 m × 30 m). Climate Engine applied a
cloud mask to the Landsat top of atmosphere (TOA) reflectance data. The cloud masking
removed medium and high confidence snow, shadow, and cirrus clouds using the Quality
Assessment Band provided in the Landsat Google Earth Engine (GEE) collection.

2.4. Statistical Methodology

A random forest model was used to determine which variables had the greatest
importance in predicting the on-the-ground phenological state of vegetation. Random
forest models are used in the ecological community when dealing with issues such as
auto-correlation [51,52]. This is due to these models being non-parametric, using bootstrap
aggregation, and implementing feature randomness. Table 2 shows the variables used in
the analysis. The field data collected was input to the randomForest package [53] in the
R statistical program [54] to create and test the model, with four simplified phenological
stages used as the output: Leaf (L), Inflorescence (I), Seed (S), and Desiccated (D). The
analysis was completed using 1000 trees and was set to test three variables at each split.
Out-of-box estimate of error was used to measure the strength of the model and the mean
decrease in Gini coefficient was used to measure the importance of each variable.

http://climateengine.org
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Table 2. List of variables used in the creation of a random forest model for the prediction of
phenological stages in the meadows.

Variable Definition

DOY Day of year
GCC Green Chromatic Coordinate value derived from phenocams

Life.Form Life-form (i.e., graminoid, forb, graminoid-like, shrub)
Moisture Soil moisture

Temperature Temperature (degrees Celsius)
Community Plant community type (i.e., dry, mesic, wet)

Grazing Grazing intensity (i.e., uncontrolled grazing, managed grazing, ungrazed)
Year Year of data collection

Meadow Meadow of data collection (Upper, Middle, etc.)
Camera Portion of meadow (i.e., high elevation, low elevation)

To further test the strength of correlation between field- and camera-based observa-
tions, the relationship between the four field-based, simplified phenological stages and the
four camera-based phenophase dates was analyzed. The date where the highest percentage
of each simplified phenological stage was seen in each community type of each meadow
region was calculated. These values were then plotted against their corresponding camera-
based phenophase dates (UD-L, SD-I, DD-S, and RD-D) and repeated measures correlation
coefficients were calculated, with meadows used as the subject for repeated measure. Fac-
torial ANOVAs and Tukey tests were utilized to determine if there were differences in
UD, SD, DD, and RD dates across vegetation communities, years, and grazing interactions.
Meadow location was used as a randomized block variable. Since the grazing treatment
began in 2020, the analysis was treated as a before–after design where a significant grazing
treatment effect would appear in the grazing–year interaction. Similar ANOVAs and Tukey
tests were created for field phenology dates (max observance of L, I, S, and D). Data met
the assumptions of homoscedasticity, independence, and normality. Root mean square
error (RMSE) and Pearson’s r were used to determine the level of correlation between
Landsat derived NDVI and camera-derived GCC. Comparisons between Landsat NDVI
and camera-derived GCC were completed using data from the dates of the Landsat imagery.

3. Results
3.1. Phenology Stage Modeling

Grazing treatments were successfully implemented and monitored in 2019 and 2020.
In 2020, grazed meadows were brought down to a 10 cm stubble height in the wet com-
munities, with cattle tending to focus their attention on the wetter areas and leaving the
other sections of the meadows largely undisturbed for the period they were allowed in the
exclosures. Phenological data of the vegetation across all meadows were collected, both in
person and remotely, and a random forest model was successfully created to predict pheno-
logical stages in the Haypress complex (L—Leaf; I—Inflorescence; S—Seed; D—Desiccated).
The out-of-box estimate of error (OOBE) obtained by the model was 33.56%. Across the
phenological classes, there were significant differences in error. Phenological stages D and
L were correctly predicted most frequently by the model, with class errors of the stages
being 0.2772 and 0.1985, respectively. The model had a more difficult time with predicting
stages I and S, with class errors of 0.5962 and 0.8703. DOY, GCC, life form, and soil moisture
were the variables with the highest level of importance based on their mean decreases in
Gini. Camera, year, grazing, and meadow were the variables with the lowest (Figure 3).
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meadows. Importance was calculated based on mean decrease of Gini.

3.2. Phenocam and Field-Based Metrics and Correlations

Different vegetation communities were effectively delineated from the phenocam
images and phenophase dates were extracted (UD—upturn date; SD—stabilization date;
DD—downturn date; RD—recession date) (Figure 4).

A statistically significant difference in DOY for SD, DD, and RD phenophases was
found across both vegetation community type and year, however not for meadow or
grazing–year interaction. For the UD phenophase, significant differences were only seen
across years (Table 3). The mean difference between 2019 and 2020 was highest for the DD
phenophase (−42.13) and lowest for the UD phenophase (−14.13). A Tukey post-hoc test
revealed significant pairwise differences only for the SD mesic-dry comparison in 2019. In
2020, community differences were seen for mesic-dry and mesic-wet comparisons across
all phenophases except UD (Figure 5). No differences between wet-dry communities were
statistically significant in either 2019 or 2020.

The date when each phenological stage was most frequently observed in the field
was unique for both years. Consistently, across both meadows and years, the phenology
stages that had the closest maximum observed DOYs were I and S (Figure 6). Significance
of variables for field-observed data was similar to that previously discussed for phenocam
data. Meadow and grazing–year interaction were not significant for any phenology stage,
while year was significant for all stages (Table 4). Vegetative community was only signifi-
cant for S, with significant interannual differences solely occurring between the mesic and
other two communities in 2020. Correlation between camera-based phenophase dates and
field-based phenological stages was very high (Figure 7). Year-to-year changes led to some
variability in the repeated measures correlation coefficients of the data, with a range of
0.725–0.942 across the two years and all community types. All correlation values were
above 0.90, except for the mesic in 2020 (0.725).
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Figure 4. Examples of phenocam regions of interest (ROIs) for dry, mesic, and wet vegetation communities in the Haypress
Meadow complex in the Desatoya Mountains, Nevada, U.S.A.

Table 3. p-values for vegetation community types, years, meadows and grazing interactions de-
rived from factorial ANOVAS, across all phenophases. Phenophase stages are upturn date (UD),
stabilization date (SD), downturn date (DD), and recession date (RD).

Variable Analysis UD SD DD RD

Year ANOVA Prob > F 0.0006 <0.0001 <0.0001 0.0001

Community ANOVA Prob > F 0.06 0.0005 0.0012 <0.0001

Grazing/Year
Interaction ANOVA Prob > F 0.992 0.929 0.289 0.164

Meadow ANOVA Prob > F 0.06 0.332 0.359 0.067
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are (A) leaf growth (L), (B) inflorescence (I), (C) seed (S), and (D) desiccated (D). Different letters
indicate significant differences.
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Table 4. p-values for vegetation community types, years, meadows and grazing interactions derived
from factorial ANOVAS, across all maximum percentages of observance for each phenology stage.
Phenology stages are leaf growth (L), inflorescence (I), seed (S), and desiccated (D).

Variable Analysis L I S D

Year ANOVA Prob > F <0.0001 <0.0001 0.0016 0.003

Community ANOVA Prob > F 0.522 0.0525 0.0248 0.244

Grazing/Year
Interaction ANOVA Prob > F 0.782 0.588 0.945 0.889

Meadow ANOVA Prob > F 0.067 0.377 0.947 0.092
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Figure 7. Plotted average day of year (DOY) for maximum percentage of observance for each phenology stage and
camera-derived phenophase for (A) dry vegetative communities, (B) mesic vegetative communities, and (C) wet vegetative
communities. Repeated measures correlation coefficients (rrm) and p-values were calculated for each year and community
type.
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Grazing intensity, as shown in the ANOVA model, had little effect on phenophase
date (Figure 8). For the UD, SD, and DD phases, the treatment that had the latest average
date varied across community type. For example, for the UD phase in 2020, the grazed
meadows had the latest average date in the dry communities (102), ungrazed had the latest
average date in the mesic communities (109), and the uncontrolled meadow had the latest
date in the wet communities when compared to the averages of the other treatment groups
(110). Additionally, when looking at the same community type, the treatment with the
latest average date was never the same across all phenophases. The RD phase was slightly
different in that, in 2019, the meadow that would be uncontrolled had the latest date in
the dry communities, and the meadows which would be ungrazed had the latest average
date for the wet and mesic communities. In 2020, however, the uncontrolled meadow had
the latest date compared to the averages of the other treatments across all communities. It
should be noted that these shifts did not equate to significance in the ANOVA model.
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Figure 8. Data for average phenophase day of year values (DOY) in relation to their respective Green Chromatic Coordinate
values (GCC) across all meadow treatments. It should be noted that in 2019, all meadows were treated as uncontrolled. In
2020, grazing treatment actually began. Designating meadows as grazed, ungrazed, and uncontrolled in 2019 was done
solely to show differences in the groups of meadows across the years. Phenophase stages are upturn date (UD), stabilization
date (SD), downturn date (DD), and recession date (RD).

3.3. Landsat and Phenocam Relationship

Due to the spatial resolution (30 × 30 m) of the Landsat data, metrics were calculated
and used at the whole meadow level, instead of at individual community levels. Across
all meadows, treatments, and years, Pearson’s r values demonstrated a strong correlation
between Landsat NDVI and phenocam GCC, and RMSE values demonstrated strong
similarities in the prediction errors of the comparisons (Table 5). RMSE values never rose
above 0.108, and Pearson’s r values never dropped below 0.91. For both 2019 and 2020, the
meadow with the highest Pearson’s r value was Lower B (0.983 and 0.984). The meadow
with the lowest Pearson’s r value for both years was Upper A (0.911 and 0.912).
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Table 5. Root mean square error (RMSE) and Pearson’s correlation coefficient (r) between phenocam
GCC and Landsat NDVI for all meadow areas.

Year Meadow Pearson’s r RMSE Prob > F

2019

Lower A 0.963365 0.107 >0.0001
Lower B 0.983981 0.104 >0.0001

Middle A 0.978051 0.087 >0.0001
Middle B 0.958376 0.075 >0.0001
Upper A 0.911001 0.061 >0.0001
Upper B 0.991294 0.137 >0.0001

Uncontrolled 0.970543 0.075 >0.0001

2020

Lower A 0.946754 0.065 >0.0001
Lower B 0.982728 0.061 >0.0001

Middle A 0.950454 0.056 >0.0001
Middle B 0.913333 0.039 >0.0001
Upper A 0.912522 0.08 >0.0001
Upper B 0.966456 0.087 >0.0001

Uncontrolled 0.945573 0.059 >0.0001

3.4. Soil Moisture

Determining the RD dates for the soil moisture of the meadows demonstrated the
effect year-to-year differences had on meadow soil moisture retention (Figure 9). The
average RD DOY for 2019 was 190, while the average DOY for 2020 was 144. The treatment
with the latest DOY in 2019 was the grazed (192 average), and the treatment with the latest
DOY in 2020 was the uncontrolled (162).
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Figure 9. Average recession dates (RD) in relation to their soil volumetric water content (%) values for grazed, ungrazed,
and uncontrolled meadows. It should be noted that in 2019, all meadows were treated as uncontrolled. In 2020, grazing
treatment actually began. Designating meadows as grazed, ungrazed, and uncontrolled in 2019 was done solely to show
differences in the groups of meadows across the years.

4. Discussion
4.1. Influences of Climatic and Community Variables

Prism data showed that the study encompassed both the wettest year over the past
decade in the meadow complex (2019, 419 mm annual precipitation) and the driest (2020,
175 mm annual precipitation). Interestingly, the effect this change in precipitation regime
had on plant phenology was more distinct in the strictly camera-based data than in the
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random forest (RF) model, which combined both field- and camera-based observations.
From the RF model, year to year variability was designated as the second least important
variable (as determined by its mean decrease in Gini). In contrast, soil moisture differences
within the season of growth had one of the highest levels of importance. When analyzing
year to year differences picked up by camera-derived phenophases, the changes were more
perceptible, with the dry year of 2020 having consistently earlier phenophases across the
meadows, which is expected due to earlier snow melt. It should also be noted that within
the RF model, temperature variability within the growing season was much less important
in determining phenological stages than DOY, life form, and soil moisture.

The type of vegetation community also played a less important role in determining
phenological stage than expected within both the RF model and the ANOVA model for the
field data. The ANOVA model only showed community significance for the S phenology
stage, and the RF model had community as the sixth most important variable (out of 11).
While delineation of these community types was determined to be fairly accurate, overlap
may have occurred leading to error. Encroachment of species from one community type into
another was common, and is clearly demonstrated in Figure 4 [55,56]. Conversely, when
comparing camera-derived dates, the ANOVA showed significant differences between
communities for all phenophases except UD. The major differences in phenophases were
seen between mesic vegetation and the other two community types. For both years, very
little variation was seen in the UD dates (probably due to high soil moisture in all meadows
early in the year). In 2020, however, as the growing season progressed, the phenophase
dates of the mesic communities came earlier. This could have been due to the mesic
community soils drying out quicker than the wet community soils, as well as the woody
shrubs in the drier communities having deeper roots and naturally later seasons of growth
than the mesic sedge communities. Regardless, for the earlier portion of the year, there was
not much difference between vegetation communities. It should also be noted, that while
phenophase UD dates started at roughly the same time for both years across all vegetation
community types, the greatest disparity between years was at the downturn and end of
growing season (i.e., DD and RD) in the mesic communities (Figure 7). This demonstrates
that the mesic communities were not only affected the most by interannual environmental
changes, but also by year-to-year environmental changes. The clarity provided by the
phenocams shows the importance that multiple temporal resolutions of observation can
have on understanding phenology in these complex ecosystems.

The RF model as a whole, had issues with differentiating between phenological stages
within the meadow complex. While the model was fairly accurate in predicting when
vegetation reached stages L and D, the error linked with stages I and S was significantly
higher. This may largely be explained by the difficulty associated with properly identifying
the two stages in the field. Certain species required greater observer experience in recog-
nizing phenological shifts and human error may be present in the data. Dense sagebrush
cover may have also obscured vision and made it difficult to ascertain field metrics of
understory forbs and graminoids. Additionally, variability in genotypes and small-scale
variability caused by competition or edaphic factors could lead to differences of phenology
of individual species [57,58]. This could have allowed for a high level of irregularity in
individual species’ flowering and seeding time, irregularity which the model may not
have detected.

It should be noted, as well, that when the two stages were differentiated, they usually
occurred fairly close together in the context of the growing season as a whole. The dates
where the highest percentage of observed species were in the I and S stages were very
close across all meadows, while the dates for L and D were much further from the next
closest stage. This would make it very difficult for the model to separate the I and S stages
from one another. In future iterations of the model, the I and S stages could possibly
be combined into a single group. While more basic, this would still help managers and
researchers in understanding when plants would be susceptible to grazing and could
influence management decisions.
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4.2. Grazing Impact on Phenology

One of the major limiting factors of this study was the deficient number of meadows
that had an uncontrolled grazing treatment. This was due, in large part, to time and
monetary restrictions. When analyzing the effects grazing had on phenology, the RF model
seemed to lack the ability to pick up variation across treatments. This was demonstrated
by grazing having the third lowest level of importance among the variables used. Camera-
derived phenophases and field-observed phenology dates also showed little variation
between grazing treatments. Some variation was seen within the RD dates, but this was
not deemed significant. With more years of grazing management, and more meadows
included in the uncontrolled treatment, differences could potentially be seen.

We theorize that any differences seen between the grazing treatments in the future may
be partially explained by soil moisture being retained in the soil later in the season. We fitted
double logistic curves comparable to the ones fitted for GCC to calculate the “phenophase
dates” for the soil moisture values in each of the meadows (Figure 9). The uncontrolled
meadow had a similar RD DOY for soil moisture in 2019 to the other meadows, but in
2020 the RD DOY shifted much later into the year when compared to the others. Zhang
et al. [59] hypothesized and observed that increased grazing in alpine meadows initially
led to lower levels of transpiration from vegetation, allowing for moisture to stay later in
the soil. Eventually, however, long term grazing led to an increase of bare ground and
evaporation, limiting soil moisture in comparison to less grazed areas. Similar trends were
shown in other studies across rangeland ecosystems [60–62]. If similar grazing patterns
were to continue in Haypress, a shift in soil moisture to earlier RD dates could potentially
occur within the uncontrolled meadow. Alternatively, sustained grazing has the potential
to delay plant development (i.e., reduce plant size), and in so doing limit water uptake
until later in the season. In a study conducted by Virgona et al. [63], they demonstrated
that prolonged grazing in wheat fields could potentially elongate the growing season and
delay development. They stated that within their experiment, for every 4-5 days grazed,
antithesis and maturity was delayed by 1 day. This and other studies demonstrate how
grazing can affect the maturation of vegetation [64–66]. This delayed necessity for water
uptake could be another explanation for why soil moisture in the uncontrolled meadow
was higher when compared to other meadows and may continue to be in future years.

4.3. Relationships between Spatial Resolutions

Phenocam derived GCC demonstrated a strong correlation with field observations
by being the variable with the second highest degree of importance in the RF model.
Additionally, Landsat NDVI maintained a high level of correlation with phenocam GCC
across all years, treatments, vegetation communities, and sites observed (see supplementary
Figure S1 for more detail). These strong relationships make a clear argument for the ability
to develop statistical models which could extrapolate phenology metrics to other Great
Basin Meadow systems using Landsat. With a wider sample size of meadows, years,
and grazing treatments, and more effort to define and model the relationship between
phenocam and satellite imagery, Landsat data could also potentially be used to extrapolate
grazing pressure to other meadow systems.

5. Conclusions

Overall, this study shows how remote sensing and on-the-ground science can work in
coordination to create a deeper understanding of phenological changes across gradients.
Within the Haypress complex, more years of observation need to be incorporated in order
to examine vegetational shifts in years that do not embody opposite ends of its climatic
spectrum. Furthermore, additional meadows could be included to analyze how heavily
grazed systems change in relation to properly managed environments and see if these
systems emulate similar patterns to previous studies. Understanding the influence grazing
has on these areas, in the context of phenology, will allow for the implementation of



www.manaraa.com

Remote Sens. 2021, 13, 4028 17 of 19

management strategies that do not create dissonance between the timing of meadow
resources and the needs of those that rely on them.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13204028/s1, Figure S1: Phenocam Green Chromatic Coordinate and Landsat Normalized
Difference Vegetation Index for all meadows in the Haypress meadow complex for 2019 and 2020.
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